- Артикул:00-01112688
- Автор: Drazenko Macanovic (Edited)
- ISBN: 978-1-77956-307-1
- Обложка: Мягкая обложка
- Издательство: Tapir academic press (все книги издательства)
- Город: Toronto
- Страниц: 383
- Формат: А4 (210х297 мм)
- Год: 2025
- Вес: 959 г
Издание на английском языке
This book is a guide to the fundamentals of electrical engineering and electronics, covering circuits, alternating current, transformers, motors, and generators. Suitable for students and engineers to understand the principles of operation and analysis of electrical systems.
Content
List of Figures
List of Tables
Preface
1. Fundamentals of electric circuits
Introduction
1.1. Electric Circuit
1.1.1. Types of Electric Circuits
1.1.2. Domestic Electric Circuit
1.1.3. Electric Circuit Symbols
1.1.4. Simple Circuit
1.1.5. Electric Circuit Formulassss
1.2. Circuit Elements and Sources
1.2.1. Current
1.2.2. Voltage or Potential Difference
1.2.3. Circuit Loads
1.2.4. Sign Convention
1.2.5. Passive Circuit Elements
1.2.6. DC Sources
1.2.7. Power
1.2.8. Energy
1.3. Circuit theorems
1.3.1. Kirchoff's Laws
1.3.2. Kirchoff's Current Law (KCL)
1.3.3. Electric Circuits Analysis
1.3.4. Superposition Theorem
1.3.5. Thevenin's Theorem
1.3.6. Norton's Theorem
Summary
Review Questions
References
2. Resistive network analysis
Introduction
2.1. Series Circuit
2.1.1. Current in a Series Circuit
2.1.2. How to Calculate Total. Resistance in a Series Circuit
2.1.3. How to Calculate Voltage Drop in a Series Circuit
2.1.4. Applications of Series Circuit
2.2. Parallel Circuits
2.2.1. Key Principles of Parallel Circuit
2.2.2. Working of Parallel Circuit
2.2.3. Characteristics of Parallel Circuits
2.2.4. Advantages of Parallel Circuits
2.2.5. Disadvantages of Parallel Circuits
2.2.6. Applications of Parallel Circuits
2.2.7. Difference Between Series and Parallel Circuit
2.3. Resistors in Parallel
2.4. Voltage in a Parallel Circuit
2.5. Kirchhoff's Current Law
2.6. Total Parallel Resistance
2.6.1. Formula for Total Parallel Resistance
2.6.2. Calculator Tip
2.6.3. The Case of Two Resistors in Parallel
2.6.4. The Case of Equal-Value. Resistors in Parallel
2.6.5. Determining an Unknown Parallel Resistor
2.6.6. Notation for Parallel Resistors
2.7. Current Sources in Parallel
2.8. Current Dividers
2.8.1. Current-Divider Formula
2.9. Power in Parallel Circuits
2.10. Parallel Circuit Applications
2.10.1. Automotive
2.10.2. Residential
2.10.3. Control Circuits
2.10.4. Analog Ammeters
2.11. Troubleshooting
2.11.1. Open Branches
2.11.2. Finding an Open Branch by Current Measurement
2.11.3. Finding an Open Branch by Resistance Measurement
2.11.4. Shorted Branches
2.12. Node Voltage Method
2.12.1. Node Voltage Method Steps
2.12.2. Verification of the Node Voltage Method Using spice
2.12.3. The Node Voltage Method Applied to an Unbalanced Wheatstone Bridge
2.13. Mesh Current Method
2.13.1. How to Use the Mesh Current Method
2.13.2. Advantages of Mesh Current vs. Branch Current Methods
Summary
Review Questions
References
3. Ac network
Analysis
Introduction
3.1. AC Fundamentals
3.1.1. Passive Components in AC Circuits
3.1.2. Series AC Circuits
3.1.3. Parallel AC Circuits
3.2. Network Theorems
3.3. Single-Phase AC Circuit
3.4. Resonance Circuit
3.4.1. Key Components in Resonance
3.4.2. Effect of Resonance
3.4.3. Characteristics of Resonance
3.4.4. Types of Resonance
3.4.5. Application of Resonance
Summary
Review Questions
References
4. Ac power-generation and distribution
Introduction
4.1. Three-Phase System
4.1.1. Three-Phase Winding Connections
4.1.2. Factors Affecting Choice of Connection
4.1.3. Pros and Cons of Transformer Connections
4.2. Power in AC Circuits
4.2.1. Active, Reactive, Apparent, and Complex Power in Sinusoidal Steady-State
4.2.2. Power Factor
4.2.3. Reactive Power
4.2.4. Unbalanced Sinusoidal Polyphase Systems
4.2.5. Multiple Frequency Systems
4.3. Three-Phase Power and Its Measurement
4.3.1. Three Wattmeter Method
4.3.2. One Wattmeter Method
4.3.3. Two Wattmeter Method
4.3.4. Variation in Wattmeter Reading (on Lagging PF)
4.3.5. Effect of Leading PF on Wattmeter Readings
4.4. Balanced and Unbalanced Load
4.4.1. Analysis of Balanced Three Phase Circuit
4.4.2. Analysis of Unbalanced Three Phase Circuit
4.5. Electrical Power System
4.5.1. Structure of Power System
4.5.2. Generation of Electrical Power
4.5.3. Transmission of Electrical Power
4.6. Residential Wiring
4.6.1. Color Coding Wires
4.7. Circuit Protective Devices and Safety Precautions
4.7.1. Nature of Protection Devices
4.7.2. Importance of Protection Devices
4.7.3. Use of Protective Equipment
4.7.4. General Protective Equipment and Tools
4.7.5. Alerting Techniques
Summary
Review Questions
References
5. Electronic instrumentation and measurement
Introduction
5.1. Conceptsof Measurement in Electronics
5.1.1. Measurement Theory
5.1.2. Types of Measurement Errors
5.1.3. Electrical Measuring Instruments
5.1.4. Main Electrical Measuring Instruments
5.2. Static and Dynamic Characteristics of Electrical Measuring Instruments
5.2.1. Static Characteristics of Electrical Measuring Instruments
5.2.2. Dynamic Characteristics of Electrical Measuring Instruments
5.3. Units of Electrical Measurement
5.3.1. Multiples and Sub-Multiples
5.4. Measurement of Voltage, Current, Resistance and Power
5.4.1. The Basics - Parallel and Series Connection
5.4.2. The Current Measurement
5.4.3. The Voltage Measurement
5.4.4. Measurement of Resistance
5.4.5. Measure Electrical Power
Summary
Review Questions
References
6. Magnetism, magnetic circuits, and electromechanical energy conversion
Introduction
6.1. Basic Concept of Magnetism
6.1.1. Origins of Magnetism
6.1.2. Magnetic Domains
6.1.3. Domain Structure
6.1.4. Magnetic Field and Its Properties
6.1.5. Description of Magnetic Field Lines
6.1.6. How Is the Magnetic Field Produced?
6.1.7. Operating the Magnetic Field
6.2. Magnetic Materials
6.2.1. Types of Magnetic Materials
6.2.2. Paramagnetic Materials
6.2.3. Diamagnetic Materials
6.2.4. Ferromagnetic Materials
6.2.5. Ferrimagnetic Materials
6.2.6. Antiferromagnetic Materials
6.3. Magnetic Circuits and Electromechanical Energy Conversion
6.3.1. Electromechanical Energy Conversion Principles
6.3.2. Magnetic Leakage and Fringing
6.3.3. Magnetic Circuit - Series and Parallel Magnetic Circuit
6.3.4. Attractive Force of Electromagnets
6.3.5. Principles of Electromechanical Energy Conversion
Summary
Review Questions
References
7. Transformer
Introduction
7.1. Overview of Transformer
7.1.1. Components of Electric Transformers
7.1.2. Working Principle of Transformer
7.1.3. Advantage and Disadvantage of Electric Transformer
7.2. Types of Transformers
7.2.1. Types of Transformers Based on Voltage Levels
7.2.2. Types of Transformers Based on the Core Medium Used
7.2.3. Types of Transformers Based on Winding Arrangement
7.2.4. Transformers Based on Usage
7.2.5. Transformers Based on Phase
7.3. Applications of Transformers
7.4. EMF Equation of Ideal Transformer
7.5. Transformer Testing
7.5.1. Type Test of Transformer
7.5.2. Routine Tests of Transformer
7.5.3. Special Tests of Transformer
7.5.4. Transformer Winding Resistance Measurement
7.5.5. Transformer Ratio Test
7.5.6. Magnetic Balance Test of Transformer
7.5.7. Magnetizing Current Test of Transformer
7.5.8. Vector Group Test of Transformer
7.5.9. Insulation Resistance Test or Megger Test of Transformer
7.5.10. Dielectric Tests of Transformer
7.5.11. Temperature Rise Test of Transformer
Summary
Review Questions
References
8. Dc machines
Introduction
8.1. Electromechanical Energy Conversion
8.1.1. Induced EMF
8.1.2. Electromagnetic Force
8.1.3. Back EMF and Counter Torque
8.2. DC Machines
8.2.1. Construction of a DC Machine
8.2.2. Armature Voltage
8.2.3. Electromagnetic Torque
8.2.4. Classification of DC Machines
8.3. Types of DC Machines
8.3.1. DC Motor
8.3.2. DC Generator
8.4. Losses IN DC Machines
8.4.1. Copper Losses
8.4.2. Iron Losses
8.4.3. Hysteresis Loss
8.4.4. Eddy Current Loss
8.4.5. Mechanical Losses
8.4.6. Constant and Variable Losses
8.5. DC Machine Advantages
8.6. Applications of DC Machines
8.6.1. Applications of DC Generators
8.6.2. Applications of DC Motors
Summary
Review Questions
References
9. Three phase
Induction motors
Introduction
9.1. Overview of Three Phase Induction Motor
9.1.1. History
9.1.2. Faraday's Law of Induction Motor
9.1.3. Construction of Three Phase Induction Motor
9.1.4. Types of Three Phase Induction Motor
9.1.5. Working Principle of a Three-Phase Induction Motor
9.1.6. Advantages of Three Phase Induction Motor
9.1.7. Disadvantages of Three Phase Induction Motor
9.2. Single Phase Induction Motors
9.2.1. Single Coil of a Single Phase Motor
9.2.2. Permanent-Split Capacitor Motor
9.2.3. Capacitor-Start Induction Motor
9.2.4. Capacitor-Run Motor Induction Motor
9.2.5. Resistance Split-Phase Motor Induction Motor
9.2.6. Nola Power Factor Corrector
9.3. Special Machines
9.3.1. Permanent Magnet Synchronous Motors (PMSM)
9.3.2. Switched Reluctance Motor (SRM)
9.3.3. Stepper Motor
9.3.4. PMBLDC Motor
Summary
Review Questions
References
10. Alternator and
Synchronous motor
Introduction
10.1. Alternator
10.1.1. Principle of Operation
10.1.2. Classifications
10.1.3. Specific Applications
10.2. Alternator Voltage Regulation
10.3. Alternator on Load
10.3.1. Effect of Load on Alternator
10.3.2. Phasor Diagrams of Alternator on Load
10.4. Synchronous Motor
10.4.1. Types of Synchronous Motor
10.4.2. Control Techniques
10.4.3. Synchronous Speed
10.4.4. Construction
10.4.5. Operation
10.4.6. Starting Methods
10.5. Armature
10.5.1. Armature Winding
10.5.2. Armature Reaction in an Alternator or Synchronous Generator
10.5.3. Advantages of Stationary Armature-Rotating Field Alternator
Summary
Review Questions
References
Index



